Примеры решения задач
Пример 1.Определить индукцию магнитного поля на оси витка с током J. Радиус витка R..
В этом выражении учтено, что
Тогда В центре витка (в точке О) z = 0 и
Пример 2. Определить индукцию магнитного поля прямого проводника с током J длиной 2l с использованием принципа суперпозиции полей. Проанализировать полученный результат при l.
где
Выполняя интегрирование по углу от a1 до a2, получаем:
При l ® ¥ a1 ® 0 и a2 ® p. В этом случае Индукцию магнитного поля прямого проводника с током можно получить и с помощью векторного потенциала
При l >> r магнитное поле и, следовательно, Az не зависят от координаты z, т.е. Az(z,r) = Az(0,r). В этом случае полученное выражение для векторного потенциала существенно упрощается (положим z = 0 и учтем, что
Поскольку индукция магнитного поля связана с векторным потенциалом соотношением
Отсюда получаем Пример 3.Круговой виток с током лежит на плоской границе разделяя вакуума и непроводящего полупространства с магнитной проницаемостью m. Найти индукцию магнитного поля в произвольной точке на оси витка, если в отсутствие магнетика индукция магнитного поля в этой точке равна В0.
Пусть Н¢ - напряженность магнитного поля, создаваемого на оси Оz током-изображением. Тогда, как это следует из граничных условий и рис 2.6, Н1 = Н0 + Н¢ и Н2 = Н0 - Н¢, где Н0 – напряженность магнитного поля витка с током в отсутствие магнетика. При z = 0 H0(0) + H¢(0) = mH0(0) -mH¢(0), Откуда следует, что
Используя результаты, полученные в примере 1этого пункта, имеем
Очевидно, что отношение
2.1.Определить индукцию магнитного поля тороидальной катушки с внешним радиусом а и внутренним – b. Число витков катушки N. По катушке протекает ток J. Проанализировать результат при увеличении внутреннего и внешнего радиусов катушки до бесконечности.
2.2.Определить индукцию магнитного поля коаксиального кабеля (радиус внутренней жилы кабеля а, радиус оплетки – b). По кабелю протекает ток J, пространство между жилой и оплеткой заполнено магнетиком с магнитной проницаемостью m .
2.3.Определить индукцию магнитного поля, создаваемого двумя бесконечными полыми коаксиальными цилиндрами радиусов a и b > a, по которым протекают одинаковые токи J в противоположных направлениях.
2.4.Определить индукцию магнитного поля прямого цилиндрического проводника радиуса а, по которому протекает ток J. Магнитная проницаемость материала проводника m, окружающее пространство – воздух. 2.5. По двум параллельным проводникам, расстояние между которыми 2d, протекают одинаковые токи J. Найти индукцию магнитного поля и векторный потенциал в точке, лежащей посередине прямой, соединяющей проводники. Рассмотреть случаи, когда токи сонаправлены, и когда токи направлены в противоположные стороны.
2.6.Рамка с током J имеет форму прямоугольника со сторонами a и b. Определить индукцию магнитного поля в геометрическом центре рамки.
2.8. Определить индукцию магнитного поля в точке О, если проводник с током J имеет вид, показанный на рис. Радиус изогнутой части проводника равен R, прямолинейные участки считать бесконечно длинными.
2.11. Определить модуль и направление вектора индукции магнитного поля безграничной плоскости, по которой течет ток с линейной плотностью i.
2.12. Внутри длинного прямого провода круглого сечения имеется круглая длинная цилиндрическая полость. Оси провода и полости совпадают. Радиус полости а, радиус провода b > a. Определить индукцию магнитного поля провода, если по нему протекает постоянный ток плотности j.
2.13. Внутри длинного прямого провода круглого сечения имеется круглая длинная цилиндрическая полость, ось которой параллельна оси провода и смещена на вектор 2.14.Расстояние между двумя параллельными линейными проводниками с одинаковыми однонаправленными токами J равно 2d. Определить индукцию магнитного поля в точке, равноудаленной от проводников на расстояние b > 2d.
2.15.Заряд q равномерно распределен по объему непроводящего однородного шара радиуса R. Шар равномерно вращается вокруг оси, проходящей через его центр, с угловой скоростью w. Найти магнитный момент шара.
2.16.Тонкая непроводящая сфера равномерно заряжена по поверхности зарядом q. Радиус сферы R. Сфера равномерно вращается вокруг оси, проходящей через ее центр, с угловой скоростью w. Найти магнитный момент сферы. 2.17.Для условия задачи 2.16найти индукцию магнитного поля в центре сферы.
2.18.Тонкий непроводящий диск радиуса R равномерно заряжен с поверхностной плотностью заряда s. Диск вращается вокруг своей оси с постоянной угловой скоростью w. Определить магнитный момент диска.
2.19. Для условия задачи 2.18найти индукцию магнитного поля в центре диска.
2.20.Два длинных параллельных провода с пренебрежимо малыми сопротивлениями с одного конца замкнуты на сопротивление R, а с другого конца подключены к источнику постоянного напряжения. Расстояние между осями проводов в h раз больше радиуса сечения каждого провода. При каком значении сопротивления R результирующая сила взаимодействия между проводами обращается в нуль?
2.21.Постоянный ток J течет по длинному прямому проводнику, сечение которого имеет форму тонкого полукольца радиуса R (см. рис. к задаче 2.10). Такой же ток течет в противоположном направлении по тонкому проводнику, расположенному на оси первого проводника. Найти силу взаимодействия проводников в расчете на единицу их длины.
2.23.Для условия задачи 2.22 найти поток вектора
2.25. Система состоит из двух параллельных плоскостей, по которым протекают параллельные токи в противоположных направлениях с линейной плотностью i. Определить индукцию магнитного поля между плоскостями и вне плоскостей. Как направлен вектор магнитной индукции?
©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.
|